Algorithm-Graph
Published in:2023-08-05 |

最短路

$n$为点数,$m$为边数

若$m$与$n^2$同一级别为稠密图,与$n$同一级别为稀疏图

稠密图使用邻接矩阵储存,稀疏图用邻接表储存

  • 单源最短路
    • 所有边权都是正数
      • 朴素$dijkstra$算法 $O(n^2+m)$
      • 堆优化版$dijkstra$算法 $O(mlogn)$
    • 存在负权边
      • $Bellman-Ford$算法 $O(nm)$
      • $SPFA$算法 一般$O(m)$,最坏$O(nm)$
  • 多源汇最短路
    • $floyd$算法 $O(n^3)$

朴素dijkstra算法

  1. 初始化距离,$dist[1]=0,dist[i]=+\infty $,st数组:当前已经确定最短路径的点
  2. 循环每一个点,找到不在st中的最短距离点t,t加入到st中,用t更新其他点的距离
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
int g[N][N];  // 存储每条边
int dist[N]; // 存储1号点到每个点的最短距离
bool st[N]; // 存储每个点的最短路是否已经确定

// 求1号点到n号点的最短路,如果不存在则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;

for (int i = 0; i < n - 1; i ++ )
{
int t = -1; // 在还未确定最短路的点中,寻找距离最小的点
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;

// 用t更新其他点的距离
for (int j = 1; j <= n; j ++ )
dist[j] = min(dist[j], dist[t] + g[t][j]);

st[t] = true;
}

if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}

一般边数m比较多,所以使用邻接矩阵g[a][b]存储

堆优化版dijkstra算法

将寻找距离最小的点的时间复杂度降低

堆可以使用手写堆或优先队列

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
typedef pair<int, int> PII;

int n; // 点的数量
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储所有点到1号点的距离
bool st[N]; // 存储每个点的最短距离是否已确定
void add(int a, int b, int c){
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
// 求1号点到n号点的最短距离,如果不存在,则返回-1
int dijkstra()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;
priority_queue<PII, vector<PII>, greater<PII>> heap;
heap.push({0, 1}); // first存储距离,second存储节点编号

while (heap.size())
{
auto t = heap.top();
heap.pop();

int ver = t.second, distance = t.first;

if (st[ver]) continue;
st[ver] = true;

for (int i = h[ver]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > distance + w[i])
{
dist[j] = distance + w[i];
heap.push({dist[j], j});
}
}
}

if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}

Bellman-Ford算法

迭代n次,每次遍历所有边,对dist[b]进行更新

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
int n, m;       // n表示点数,m表示边数
int dist[N]; // dist[x]存储1到x的最短路距离

struct Edge // 边,a表示出点,b表示入点,w表示边的权重
{
int a, b, w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;

// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
for (int i = 0; i < n; i ++ )
{
for (int j = 0; j < m; j ++ )
{
int a = edges[j].a, b = edges[j].b, w = edges[j].w;
if (dist[b] > dist[a] + w)
dist[b] = dist[a] + w;
}
}

if (dist[n] > 0x3f3f3f3f / 2) return -1;
return dist[n];
}
//遍历完后满足三角不等式
dist[b] <= dist[a] + w

可以用于找负环,时间复杂度比较高

SPFA算法

队列优化的Bellman-Ford算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N]; // 存储每个点到1号点的最短距离
bool st[N]; // 存储每个点是否在队列中

// 求1号点到n号点的最短路距离,如果从1号点无法走到n号点则返回-1
int spfa()
{
memset(dist, 0x3f, sizeof dist);
dist[1] = 0;

queue<int> q;
q.push(1);
st[1] = true;

while (q.size())
{
auto t = q.front();
q.pop();

st[t] = false;

for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
if (!st[j]) // 如果队列中已存在j,则不需要将j重复插入
{
q.push(j);
st[j] = true;
}
}
}
}

if (dist[n] == 0x3f3f3f3f) return -1;
return dist[n];
}

推荐使用,只要不被卡或者存在负环

判断负环

在进行更新dist[j] = dist[t] + w时,同时维护cnt[x] (1号点到x号点经过的边数)

cnt[x] = cnt[t]+1;

若某个cnt[x] 大于等于n,则说明存在负环

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx; // 邻接表存储所有边
int dist[N], cnt[N]; // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N]; // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
// 不需要初始化dist数组
// 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

queue<int> q;
for (int i = 1; i <= n; i ++ )
{
q.push(i);
st[i] = true;
}

while (q.size())
{
auto t = q.front();
q.pop();

st[t] = false;

for (int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if (dist[j] > dist[t] + w[i])
{
dist[j] = dist[t] + w[i];
cnt[j] = cnt[t] + 1;
if (cnt[j] >= n) return true; // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
if (!st[j])
{
q.push(j);
st[j] = true;
}
}
}
}

return false;
}

Floyd算法

基于动态规划

1
2
3
4
5
6
7
8
9
10
11
12
13
14
初始化:
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
if (i == j) d[i][j] = 0;
else d[i][j] = INF;

// 算法结束后,d[a][b]表示a到b的最短距离
void floyd()
{
for (int k = 1; k <= n; k ++ )
for (int i = 1; i <= n; i ++ )
for (int j = 1; j <= n; j ++ )
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}

最小生成树

Prim算法

处理稠密图

朴素Prim算法 $O(n^2)$

类似dijkstra,找出距离集合最短的点,加入集合,更新其他点到集合的距离

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
int n;      // n表示点数
int g[N][N]; // 邻接矩阵,存储所有边
int dist[N]; // 存储其他点到当前最小生成树的距离
bool st[N]; // 存储每个点是否已经在生成树中


// 如果图不连通,则返回INF(值是0x3f3f3f3f), 否则返回最小生成树的树边权重之和
int prim()
{
memset(dist, 0x3f, sizeof dist);

int res = 0;
for (int i = 0; i < n; i ++ )
{
int t = -1;
for (int j = 1; j <= n; j ++ )
if (!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;

if (i && dist[t] == INF) return INF;

if (i) res += dist[t];
st[t] = true;

for (int j = 1; j <= n; j ++ ) dist[j] = min(dist[j], g[t][j]);
}

return res;
}

堆优化Prim $O(mlogn)$ (不常用)

Kruskal算法

$O(mlogm)$ 处理稀疏图

  1. 将所有边按照权重排序
  2. 枚举每条边a->b,权重c (如果ab不联通,则将边ab加入集合中)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
int n, m;       // n是点数,m是边数
int p[N]; // 并查集的父节点数组

struct Edge // 存储边
{
int a, b, w;

bool operator< (const Edge &W)const
{
return w < W.w;
}
}edges[M];

int find(int x) // 并查集核心操作
{
if (p[x] != x) p[x] = find(p[x]);
return p[x];
}

int kruskal()
{
sort(edges, edges + m);

for (int i = 1; i <= n; i ++ ) p[i] = i; // 初始化并查集

int res = 0, cnt = 0;
for (int i = 0; i < m; i ++ )
{
int a = edges[i].a, b = edges[i].b, w = edges[i].w;

a = find(a), b = find(b);
if (a != b) // 如果两个连通块不连通,则将这两个连通块合并
{
p[a] = b;
res += w;
cnt ++ ;
}
}

if (cnt < n - 1) return INF;
return res;
}
Prev:
Algorithm-Math
Next:
Algorithm-Search