数组中找一个值$x$作为分界点(可以是$arr\left [ l \right ]$ ,$arr\left [ r \right ]$,$arr\left [ \frac{l+r}{2} \right ]$ 等等…)
调整区间,使得左边的区间所有数$\le$x,右边区间所有数$>$x
定义两个指针分别在左右边界
$i$不断右移,直到遇到$arr[i]$ $>x$,就停下
$j$不断左移,直到遇到$arr[j]\le x$,就停下
交换$arr[i]$与$arr[j]$
递归处理左右区间
模版
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
publicstaticvoidquick_sort(int q[], int l, int r){ if (l >= r) return; inti= l - 1, j = r + 1, x = q[l + r >> 1]; while (i < j){ do i ++ ; while (q[i] < x); do j -- ; while (q[j] > x); if (i < j) { intt= q[i]; q[i] = q[j]; q[j] = t; } } quick_sort(q, l, j); quick_sort(q, j + 1, r); }
doublebsearch_3(double l, double r) { finaldoubleeps=1e-6; // eps 表示精度,取决于题目对精度的要求 //比需要保留的位数多2 while (r - l > eps) { doublemid= (l + r) / 2; if (check(mid)) r = mid; else l = mid; } return l; }
精度比需要保留的位数多-2次方
可以把$while$循环直接换成for100次
高精度
$C++$模版
高精度加法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// C = A + B, A >= 0, B >= 0 vector<int> add(vector<int> &A, vector<int> &B) { if (A.size() < B.size()) returnadd(B, A);
vector<int> C; int t = 0; for (int i = 0; i < A.size(); i ++ ) { t += A[i]; if (i < B.size()) t += B[i]; C.push_back(t % 10); t /= 10; }
if (t) C.push_back(t); return C; }
高精度减法
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// C = A - B, 满足A >= B, A >= 0, B >= 0 vector<int> sub(vector<int> &A, vector<int> &B) { vector<int> C; for (int i = 0, t = 0; i < A.size(); i ++ ) { t = A[i] - t; if (i < B.size()) t -= B[i]; C.push_back((t + 10) % 10); if (t < 0) t = 1; else t = 0; }
// C = A * b, A >= 0, b >= 0 vector<int> mul(vector<int> &A, int b) { vector<int> C;
int t = 0; for (int i = 0; i < A.size() || t; i ++ ) { if (i < A.size()) t += A[i] * b; C.push_back(t % 10); t /= 10; }
while (C.size() > 1 && C.back() == 0) C.pop_back();
return C; }
高精度除以低精度
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// A / b = C ... r, A >= 0, b > 0 vector<int> div(vector<int> &A, int b, int &r) { vector<int> C; r = 0; for (int i = A.size() - 1; i >= 0; i -- ) { r = r * 10 + A[i]; C.push_back(r / b); r %= b; } reverse(C.begin(), C.end()); while (C.size() > 1 && C.back() == 0) C.pop_back(); return C; }
高精度乘以高精度
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
cin>>a1>>b1; int lena=strlen(a1); int lenb=strlen(b1); for(i=1;i<=lena;i++)a[i]=a1[lena-i]-'0'; for(i=1;i<=lenb;i++)b[i]=b1[lenb-i]-'0'; for(i=1;i<=lenb;i++) for(j=1;j<=lena;j++) c[i+j-1]+=a[j]*b[i]; for(i=1;i<lena+lenb;i++) if(c[i]>9) { c[i+1]+=c[i]/10; c[i]%=10; } len=lena+lenb; while(c[len]==0&&len>1)len--;
int st = -2e9, ed = -2e9; for (auto seg : segs) if (ed < seg.first) { if (st != -2e9) res.push_back({st, ed}); st = seg.first, ed = seg.second; } else ed = max(ed, seg.second);